Monday, October 10, 2016

Fast Moving Gemiddelde C ++

In my handel aansoek Ek het live bosluise van aandele pryse. Ek moet SMA handhaaf. Kom ons neem aan ek wil SMA van 20 kerse, waar duur van elke kers is 10 sekondes. Dit beteken dat elke 10 sekondes Ek het kontrolepunt waar Ek huidige kers sluit en stoor gemiddelde prys vir die laaste 10 sekondes. Gemiddeld is (maksimum - min) / 2 Ek begin nuwe kers en winkel laaste prys. Ek skoon-up verouderde kers. Ek werk laaste prys van huidige vorm kers en herbereken SMA. So op 'n blok ek moet herbereken SMA. In die meeste gevalle net prys van die laaste kers verander (want ons gebruik van laaste prys). Een maal per 10 sekondes wat ek nodig het 'n bietjie meer ekstra werk - ek moet die gemiddelde van die ou kers, en die gemiddelde winkel van net gemaak kers vergeet. Kan jy raai hoe om dit te implementeer met die laagste latency Lae latency is primêre vereiste. gevra 28 April 14 aan 10:21 Ek is nie seker of dit die benadering jy op soek na, maar hier is die pseudokode vir baie vinnige SMAs. Eenvoudige bewegende gemiddelde: Ek neem aan dat jou data kom in die vorm van 'n paar stroom en gestoor in 'n aaneenlopende geheue plek (ten minste met voortdurend mappable adresse) Op dié manier met twee toevoegings en een vermenigvuldiging (met 1/2000) kan jy daaropvolgende bewegende genereer gemiddeldes vir die nuwe bosluise. Eksponensiële bewegende gemiddelde: Dit is 'n ordentlike alternatiewe, soos hierbo genoem: Hier is dit nie regtig 'n N-daagse bewegende gemiddelde. Dit is net 'n geweegde bewegende gemiddelde met 87 weightage om die laaste N-dae, so byna N-dae is meer soos dit. Let op samesteller optimalisaties: Doen asseblief kennis dat die draai op SSE of Avx opsies indien beskikbaar sal massiewe speedup van hierdie algoritmes staat stel om as verskeie berekeninge uit te churned in 'n enkele SVE cycle. I weet dit is haalbaar met hupstoot volgens: Maar ek regtig wil om te verhoed dat die gebruik van hupstoot. Ek het googled en nie gevind nie enige geskikte of leesbare voorbeelde. Eintlik wil ek die bewegende gemiddelde van 'n deurlopende stroom van 'n stroom van drywende punt getalle met behulp van die mees onlangse 1000 getalle as 'n data monster op te spoor. Wat is die maklikste manier om dit wat ek eksperimenteer met die gebruik van 'n omsendbrief skikking, eksponensiële bewegende gemiddelde en 'n meer eenvoudige bewegende gemiddelde en bevind dat die resultate van die omsendbrief array geskik my behoeftes beste te bereik. gevra 12 Junie 12 aan 04:38 As jou behoeftes is eenvoudig, kan jy net probeer om met behulp van 'n eksponensiële bewegende gemiddelde. Eenvoudig gestel, jy maak 'n akkumulator veranderlike, en as jou kode kyk na elke monster, die kode updates die akkumulator met die nuwe waarde. Jy kies 'n konstante alfa wat tussen 0 en 1, en bereken die volgende: Jy hoef net 'n waarde van alfa vind waar die effek van 'n gegewe voorbeeld net duur vir ongeveer 1000 monsters. Hmm, Ek is nie eintlik seker dit is geskik vir jou, noudat Ive het dit hier. Die probleem is dat 1000 is 'n mooi lang venster vir 'n eksponensiële bewegende gemiddelde Ek is nie seker daar is 'n alfa dat die gemiddelde van die afgelope 1000 getalle sou versprei, sonder onderloop in die drywende punt berekening. Maar as jy 'n kleiner gemiddelde, wou soos 30 nommers of so, dit is 'n baie maklike en vinnige manier om dit te doen. antwoord 12 Junie 12 by 04:44 1 op jou post. Die eksponensiële bewegende gemiddelde kan nie toelaat dat die alfa tot wisselvallig wees. So dit kan dit gebruik word om tyd basis gemiddeldes bereken (bv grepe per sekonde). As die tyd sedert die laaste akkumulator update is meer as 1 sekonde, jy laat Alpha wees 1.0. Anders, kan jy laat Alpha wees (usecs sedert verlede update / 1000000). â € jxh 12 Junie 12 aan 06:21 Eintlik wil ek die bewegende gemiddelde van 'n deurlopende stroom van 'n stroom van drywende punt getalle met behulp van die mees onlangse 1000 getalle as 'n data monster op te spoor. Let daarop dat die onderstaande updates die totale soos elemente soos bygevoeg / vervang, vermy duur O (N) traversal om die som te bereken - wat nodig is vir die gemiddelde - op aanvraag. Totaal gemaak 'n ander parameter van T te ondersteun bv met behulp van 'n lang lang wanneer altesaam 1000 lank s, 'n int vir char s, of 'n dubbel totale float s. Dit is 'n bietjie gebrekkig deurdat numsamples kon verby INTMAX - as jy omgee wat jy kan gebruik om 'n unsigned long lank. of gebruik 'n ekstra Bool data lid aan te teken wanneer die houer eerste gevul terwyl fietsry numsamples rondom die skikking (beste herdoop dan iets onskuldig soos POS). antwoord 12 Junie 12 aan 05:19 aanvaar word dat quotvoid operateur (T monster) quot is eintlik quotvoid operatorltlt (T monster) quot. â € oPless 8 Junie 14 by 11:52 oPless ahhh. goed raakgesien. eintlik het ek bedoel dat dit nietig operateur () (T monster), maar natuurlik jy kan gebruik wat ook al notasie jy graag. Sal los, te danke. â € Tony D 8 Junie 14 by 14: 27As ander genoem het, jy moet 'n IIR (oneindige impulsrespons) filter eerder as die FIR (eindige impulsrespons) filter jy is nou met behulp oorweeg. Daar is meer as dit, maar met die eerste oogopslag FIR filters word toegepas as eksplisiete konvolusie en IIR filters met vergelykings. Die besondere IIR filter Ek gebruik 'n baie in mikrobeheerders is 'n enkele paal laaglaatfilter. Dit is die digitale ekwivalent van 'n eenvoudige R-C analoog filter. Vir die meeste aansoeke, sal hierdie beter eienskappe as die boks filter wat jy gebruik het. Die meeste gebruike van 'n boks filter wat ek teëgekom het is 'n gevolg van iemand nie aandag in digitale seinverwerking klas, nie as gevolg van die behoefte van hul besondere eienskappe. As jy net wil 'n hoë frekwensies dat jy weet is geraas te verminder, 'n enkele paal laaglaatfilter is beter. Die beste manier om 'n digitaal te implementeer in 'n mikrobeheerder is gewoonlik: filt lt-- filt VF (NEW - filt) filt is 'n stukkie van die aanhoudende staat. Dit is die enigste aanhoudende veranderlike wat jy nodig het om hierdie filter te bereken. NUWE is die nuwe waarde wat die filter word opgedateer met hierdie iterasie. VF is die filter fraksie. wat pas 'n bekommernis vir die filter. Kyk na hierdie algoritme en sien dat vir 0 VF die filter is oneindig swaar sedert die uitset verander nooit. Vir 1 VF, sy werklik geen filter glad sedert die uitset volg net die insette. Nuttige waardes van die twee. Op klein stelsels haal jy VF om 1/2 N wees sodat die vermenigvuldig met VF bereik kan word as 'n reg verskuiwing deur N stukkies. Byvoorbeeld, kan VF wees 16/1 en die vermenigvuldig met VF dus 'n reg verskuiwing van 4 stukkies. Andersins hierdie filter moet net een aftrek en een byvoeging, hoewel die getalle gewoonlik nodig om wyer as die invoerwaarde (meer op numeriese presisie in 'n aparte afdeling hieronder) wees. Ek neem gewoonlik A / D lesings aansienlik vinniger as dit nodig is en pas twee van hierdie filters kaskade. Dit is die digitale ekwivalent van twee R-C filters in reeks, en verswak met 12 dB / oktaaf ​​bokant die rolloff frekwensie. Maar vir A / D lesings sy gewoonlik meer relevant om te kyk na die filter in die tydgebied deur die oorweging van sy stap reaksie. Dit vertel jou hoe vinnig jou stelsel 'n verandering sal sien wanneer die ding is wat jy meet veranderinge. Om die ontwerp van hierdie filters (wat net beteken pluk VF en besluit hoeveel van hulle waterval) te fasiliteer, ek gebruik my program FILTBITS. Jy gee die aantal verskuiwing stukkies vir elke VF in die kaskade reeks filters, en dit bere die stap reaksie en ander waardes. Eintlik het ek gewoonlik loop dit via my wrapper script PLOTFILT. Dit loop FILTBITS, wat 'n CSV-lêer maak, dan plotte die CSV. Byvoorbeeld, hier is die resultaat van PLOTFILT 4 4: Die twee parameters om PLOTFILT beteken daar twee filters kaskade van die hierbo beskryf tipe. Die waardes van 4 dui die aantal verskuiwing stukkies om die vermenigvuldig met VF besef. Die twee VF waardes is dus 1/16 in hierdie geval. Die rooi spoor is die eenheid stap reaksie, en is die belangrikste ding om te kyk na. Byvoorbeeld, hierdie vir jou vertel dat as die insette onmiddellik verander, die opbrengs van die gekombineerde filter sal vestig tot 90 van die nuwe waarde in 60 iterasies. As jy omgee vir 95 wegsterftyd dan moet jy wag sowat 73 iterasies, en vir 50 wegsterftyd slegs 26 iterasies. Die groen spoor wys jou die uitset van 'n enkele volle amplitude piek. Dit gee jou 'n idee van die ewekansige geraas onderdrukking. Dit lyk soos geen enkele voorbeeld meer as 'n 2.5 verandering in die uitset sal veroorsaak. Die blou spoor is 'n subjektiewe gevoel van wat hierdie filter doen met 'n wit geraas te gee. Dit is nie 'n streng toets, want daar is geen waarborg wat presies die inhoud was van die ewekansige getalle opgetel as die wit geraas insette vir hierdie lopie van PLOTFILT. Sy net om jou 'n rowwe gevoel van hoeveel dit sal platgedruk en hoe glad dit is. PLOTFILT, miskien FILTBITS, en baie van die ander nuttige dinge, veral vir PIC firmware ontwikkeling is beskikbaar in die PIC Ontwikkeling tools sagteware vrylating op my bladsy sagteware afgelaai. Bygevoeg oor numeriese presisie Ek sien uit die kommentaar en nou 'n nuwe antwoord dat daar belangstelling in die bespreking van die aantal bisse wat nodig is om hierdie filter te implementeer. Let daarop dat die vermenigvuldig met VF log 2 (VF) sal skep nuwe stukkies onder die binêre punt. Op klein stelsels, is VF gewoonlik gekies om 1/2 N wees sodat dit vermeerder eintlik besef deur 'n regte verskuiwing van N stukkies. Filt is dus gewoonlik 'n vaste punt heelgetal. Let daarop dat hierdie een van die wiskunde nie die geval te verander van die verwerkers oogpunt. Byvoorbeeld, as jy die filter 10 bis A / D lesings en N 4 (1/16 VF), dan moet jy 4 fraksie stukkies onder die 10 bis integriteit A / D lesings. Een meeste verwerkers, youd doen 16 bis integriteit bedrywighede weens die 10 bis A / D lesings. In hierdie geval is, kan jy nog doen presies dieselfde 16 bis integriteit opertions, maar begin met die A / D lesings links verskuif deur 4 stukkies. Die verwerker nie die geval is die verskil en nie die geval is weet moet. Doen die wiskunde op hele 16 bit heelgetalle werk of jy dit as '12.4 vaste punt of ware 16 bit heelgetalle (16.0 vaste punt) wees. In die algemeen, moet jy N stukkies elke filter paal voeg as jy dit nie wil geraas voeg as gevolg van die numeriese verteenwoordiging. In die voorbeeld hierbo, sal die tweede filter van twee moet 1044 18 stukkies inligting nie verloor het. In die praktyk op 'n 8 bit masjien wat youd gebruik 24 bit waardes beteken. Tegnies slegs die tweede paal van twee sou die wyer waarde nodig nie, maar vir firmware eenvoud Ek gebruik gewoonlik dieselfde verteenwoordiging, en sodoende dieselfde kode, vir alle pole van 'n filter. Gewoonlik skryf ek 'n subroutine of makro een filter paal aksie uit te voer, dan aansoek doen dat elke paal. Of 'n subroutine of makro hang af of siklusse of program geheue is belangriker in daardie spesifieke projek. In ieder geval, ek gebruik 'n paar kras staat om nuwe pas in die subroutine / makro wat filt updates, maar ook belastings wat in dieselfde kras staat NUWE in. Dit maak dit maklik om verskeie pale toe te pas, aangesien die opgedateer filt van een pool is die NUWE van die volgende een. Wanneer 'n subroutine, sy nuttig om 'n wyser punt om filt op die manier, wat net ná filt op die pad uit is opgedateer. Op dié manier die subroutine bedryf outomaties op agtereenvolgende filters in die geheue as meer as een keer genoem. Met 'n makro hoef jy nodig het 'n wyser omdat jy slaag in die adres te werk op elke iterasie. Kode Voorbeelde Hier is 'n voorbeeld van 'n makro soos hierbo beskryf vir 'n PIC 18: En hier is 'n soortgelyke makro vir 'n PIC 24 of dsPIC 30 of 33: Beide hierdie voorbeelde is geïmplementeer as makros met behulp van my PIC assembler voorverwerker. wat is meer in staat is as een van die ingeboude makro fasiliteite. clabacchio: Nog 'n probleem wat ek moes genoem is implementering firmware. Jy kan 'n enkele paal laaglaatfilter subroutine keer skryf, dan pas dit meer as een keer. Om die waarheid te gewoonlik skryf ek so 'n subroutine om 'n wyser te neem in die geheue om die filter staat, dan is dit bevorder die wyser sodat dit kan genoem word in die reeks maklik om 'n multi-paal filters te realiseer. â € Olin Lathrop 20 April 12 by 15:03 1. Baie dankie vir jou antwoorde - almal van hulle. Ek het besluit om hierdie IIR Filter gebruik, maar dit Filter is nie gebruik word as 'n Standard laagdeurlaatfilter, want ek moet Counter Waardes gemiddeld en vergelyk kan word om veranderinge in 'n sekere omvang te spoor. aangesien hierdie waardes van baie verskillende dimensies afhangende van Hardware wees Ek wou 'n gemiddelde te neem ten einde in staat te wees om outomaties te reageer op hierdie Hardware spesifieke veranderinge. â € sensslen 21 12 Mei om 12:06 As jy kan lewe met die beperking van 'n bevoegdheid van twee aantal items te Gemiddeld (dws 2,4,8,16,32 ens) dan is die kloof kan maklik en doeltreffend gedoen word op 'n lae prestasie mikro sonder toegewyde verdeel, want dit kan gedoen word as 'n bietjie skuif. Elke skof reg is 'n krag van twee bv: Die OP het gedink hy het twee probleme, verdeel in 'n PIC16 en geheue vir sy ring buffer. Hierdie antwoord dui daarop dat die skeidslyn is nie moeilik. Toegegee dit spreek nie die geheue probleem, maar die SE stelsel kan gedeeltelike antwoorde, en gebruikers kan iets uit elke antwoord neem vir hulself, of selfs wysig en kombineer other39s antwoorde. Aangesien sommige van die ander antwoorde vereis dat 'n kloof werking, hulle is soortgelyk onvolledig omdat hulle nie wys hoe om doeltreffend hierdie op 'n PIC16 bereik. â € Martin 20 April 12 by 13:01 Daar is 'n antwoord vir 'n ware bewegende gemiddelde filter (aka wagon filter) met minder geheue vereistes, as jy verstand downsampling hoef. Die sogenaamde kaskade integreerder-kam filter (CIC). Die idee is dat jy 'n integreerder wat jy verskille oor 'n tydperk, en die sleutel-geheue te bespaar, is dat deur downsampling, dont jy elke waarde van die integreerder stoor. Dit kan toegepas word met behulp van die volgende pseudokode: Jou effektiewe bewegende gemiddelde lengte is decimationFactorstatesize maar jy moet net om statesize monsters te hou. Dit is duidelik dat jy kan 'n beter prestasie kry as jou statesize en decimationFactor magte van 2 is, sodat die afdeling en restant operateurs kry vervang deur skofte en masker-ands. Naskrif: Ek stem saam met Olin dat jy altyd in ag moet neem eenvoudig IIR filters voor 'n bewegende gemiddelde filter. As jy dit nie nodig het die frekwensie-nulls van 'n wagon filter, sal 'n 1-paal of 2-paal laaglaatfilter waarskynlik werk boete. Aan die ander kant, as jy die filter vir die doeleindes van uitkap (neem 'n hoë-monster-koers insette en gemiddeld dit vir gebruik deur 'n lae-koers proses) dan 'n CIC filter kan wees net wat jy soek. (Veral as jy statesize1 kan gebruik en heeltemal te vermy die ringbuffer met net 'n enkele vorige integreerder waarde) Daar is 'n paar in-diepte analise van die wiskunde agter die gebruik van die eerste orde IIR filter wat Olin Lathrop reeds oor beskryf op die Digitale Seinverwerking stapel ruil (sluit baie mooi foto's.) die vergelyking vir hierdie IIR filter is: dit kan toegepas word met behulp van slegs heelgetalle en geen verdeeldheid onder die volgende kode (dalk 'n debugging nodig as ek tik uit die geheue.) hierdie filter by benadering 'n bewegende gemiddelde van die laaste K monsters deur die oprigting van die waarde van alfa tot 1 / K. Doen dit in die voorafgaande kode deur te definieer ing BITS om log2 (K), dit wil sê vir K 16 stel BITS tot 4, vir K 4 stel BITS tot 2, ens (Ill verifieer die kode hier gelys word sodra ek 'n verandering te kry en hierdie antwoord wysig indien nodig.) antwoord 23 Junie 12 aan 04:04 Hier is 'n enkel-paal laaglaatfilter (bewegende gemiddelde, met afsnyfrekwensie CutoffFrequency). Baie eenvoudig, baie vinnig, werk baie goed, en byna geen geheue oorhoofse. Let wel: Alle veranderlikes omvang buite die filter funksie, behalwe die geslaag in newInput Nota: Hierdie is 'n enkele stadium filter. Veelvuldige fases kan saam kaskade die skerpte van die filter te verhoog. As jy meer as een stadium gebruik, sal jy moet DecayFactor pas (soos verwys na die afsny-Frequency) te vergoed. En natuurlik al wat jy nodig het, is die twee lyne oral geplaas, hulle dont hul eie funksie het. Hierdie filter het wel 'n oprit-up tyd voor die bewegende gemiddelde verteenwoordig dié van die insetsein. As jy nodig het om dit oprit-up tyd omseil, kan jy net inisialiseer MovingAverage om die eerste waarde van newInput in plaas van 0, en hoop dat die eerste newInput isnt 'n uitskieter. (CutoffFrequency / SampleRate) het 'n reeks van tussen 0 en 0,5. DecayFactor is nie 'n waarde tussen 0 en 1, gewoonlik naby aan 1. Enkellopend-presisie dryf is goed genoeg vir die meeste dinge, ek verkies net dubbelspel. As jy nodig het om te hou met heelgetalle, kan jy sit DecayFactor en Amplitude Factor in fraksionele heelgetalle, waarin die teller gestoor as die heelgetal, en die deler is 'n heelgetal krag van 2 (sodat jy kan bietjie-verskuiwing na regs as die deler eerder as om te verdeel in die filter lus). Byvoorbeeld, as DecayFactor 0.99, en jy wil om heelgetalle gebruik, jy kan stel DecayFactor 0.99 65536 64881. En dan wanneer jy vermenigvuldig met DecayFactor in jou filter lus, net skuif die gevolg 16. Vir meer inligting oor hierdie, 'n uitstekende boek dis aanlyn, hoofstuk 19 op rekursiewe filters: www. dspguide / ch19.htm PS Vir die bewegende gemiddelde paradigma, 'n ander benadering tot die opstel van DecayFactor en AmplitudeFactor wat meer relevant is vir jou behoeftes kan wees, kan sê wat jy wil die vorige, sowat 6 items saam gemiddeld, doen dit strategies, youd 6 items en deel te voeg met 6, sodat jy kan die AmplitudeFactor stel om 1/6, en DecayFactor om (1.0 - AmplitudeFactor). antwoord 14 Mei 12 aan 22:55 Almal het deeglik kommentaar op die nut van IIR teen FIR, en op krag-van-twee-afdeling. ID net graag 'n paar implementering besonderhede gee. Die onderstaande werk goed op klein mikrobeheerders met geen FPU. Theres geen vermenigvuldiging, en as jy N hou 'n krag van twee, al die afdeling is enkel-siklus bietjie-verskuiwing. Basiese FIR ring buffer: hou 'n lopende buffer van die laaste N waardes, en 'n lopende som van al die waardes in die buffer. Elke keer as 'n nuwe monster kom in, trek die oudste waarde in die buffer van som, vervang dit met die nuwe monster, voeg die nuwe monster te som, en uitset som / N. Gewysig IIR ring buffer: hou 'n lopende totaal van die laaste N waardes. Elke keer as 'n nuwe monster kom in, som - som / N, voeg in die nuwe monster, en uitset som / N. antwoord 28 Augustus 13 aan 13:45 As I39m jy lees reg, you39re beskrywing van 'n eerste-orde IIR filtreer die waarde you39re trek isn39t die oudste waarde wat uitval, maar is in plaas van die gemiddelde van die vorige waardes. Eerste-orde IIR filters kan beslis nuttig wees, maar I39m nie seker wat jy bedoel wanneer jy suggereer dat die uitset is dieselfde vir alle periodiese seine. Op 'n 10kHz sample rate, voer 'n 100Hz vierkante golf in 'n 20-stadium boks filter sal 'n teken dat eenvormig styg vir 20 monsters oplewer, sit hoog vir 30, daal eenvormig vir 20 monsters, en sit laag vir 30. 'n eerste-orde IIR filter. â € supercat 28 Augustus 13 aan 15:31 sal 'n golf wat skerp begin oplewer stygende en geleidelik afplat naby (maar nie by) die maksimum insette, dan skerp begin val en geleidelik afplat naby (maar nie by) die insette minimum. Baie verskillende gedrag. â € supercat 28 Augustus 13 by 15:32 Een probleem is dat 'n eenvoudige bewegende gemiddelde mag of nie mag nuttig wees. Met 'n IIR filter, kan jy 'n lekker filter met relatief min calcs kry. Die FIR jy beskryf kan net gee jou 'n reghoek in die tyd - 'n sed in freq - en jy can39t die kant lobbe te bestuur. Dit kan die moeite werd om te gooi in 'n paar heelgetal vermeerder sodat dit 'n mooi simmetriese verstelbare FIR as jy kan spaar die klok bosluise wees. uitvoering maak Scott Seidman 29 Augustus 13 by 13:50 ScottSeidman: Nie nodig vir vermeerder as 'n mens het net elke stadium van die FIR óf uitset die gemiddelde van die insette op daardie stadium en sy vorige gestoor waarde, en dan slaan die insette (indien 'n mens die numeriese reeks, kan 'n mens die som eerder as die gemiddelde gebruik). Of that39s beter as 'n boks filter hang af van die aansoek (die stap reaksie van 'n boks filter met 'n totale vertraging van 1ms, byvoorbeeld, sal 'n nare d2 het / dt piek wanneer die insette verander, en weer 1ms later, maar sal moet die minimum moontlike d / dt vir 'n filter met 'n totale 1ms vertraging). â € supercat 29 Augustus 13 aan 15:25 Soos mikeselectricstuff gesê, as jy regtig nodig het om jou geheue behoeftes te verminder, en jy dit nie omgee jou impulsrespons om 'n eksponensiële (in plaas van 'n vierkantige pols), sou ek gaan vir 'n eksponensiële bewegende gemiddelde filter . Ek gebruik dit op groot skaal. Met hierdie tipe filter, hoef jy geen buffer nodig het. Jy hoef nie te N afgelope monsters te stoor. Slegs een. So, kry jou geheue vereistes kap met 'n faktor van N. Ook, moenie jy nodig het 'n afdeling vir daardie. Slegs vermenigvuldiging. As jy toegang tot swaai-punt rekenkundige het, gebruik swaai-punt vermenigvuldiging. Anders, doen heelgetal vermenigvuldiging en skuif na regs. Ons is egter in 2012, en ek sal u aanbeveel om opstellers (en MCUs) wat u toelaat om te werk met swaai-punt getalle gebruik. Behalwe dat meer geheue doeltreffend en vinniger (jy hoef nie te items in enige omsendbrief buffer werk), sou ek sê dit is ook meer natuurlike. omdat 'n eksponensiële impulsrespons wedstryde beter soos die natuur optree, in die meeste gevalle. antwoord 20 April 12 aan 09:59 Een probleem met die IIR filter as byna aangeraak deur Olin en supercat maar blykbaar geïgnoreer deur ander is dat die afronding af stel sommige onakkuraatheid (en potensieel vooroordeel / afkorting). veronderstelling dat N is 'n krag van twee, en net heelgetal rekenkunde gebruik word, die verskuiwing reg nie stelselmatig uit te skakel die LSBs van die nuwe monster. Dit beteken dat hoe lank die reeks ooit kon wees, die gemiddelde sal nooit neem diegene in ag neem. Byvoorbeeld, veronderstel 'n stadig afneem reeks (8,8,8. 8,7,7,7. 7,6,6,) en neem die gemiddelde is inderdaad 8 aan die begin. Die vuis 7 monster sal die gemiddelde bring tot 7, ongeag die filter sterkte. Net vir 'n monster. Dieselfde storie vir 6, ens Nou dink aan die teenoorgestelde. die reeks styg. Die gemiddelde sal bly op 7 ewig, totdat die monster is groot genoeg om dit te verander. Natuurlik, kan jy reg vir die vooroordeel deur die byvoeging van 1 / 2N / 2, maar dit sal nie regtig los die akkuraatheid probleem. In daardie geval die dalende reeks sal vir ewig bly, 8 tot en met die monster is 8-1 / 2 (N / 2). Vir N4 byvoorbeeld 'n monster bo nul sal die gemiddelde onveranderd te hou. Ek glo dat 'n oplossing vir dit sou impliseer 'n akkumulator van die verlore LSBs hou. Maar ek didnt maak dit ver genoeg om kode gereed te hê, en ek is nie seker of dit sal nie skade aan die IIR krag in sommige ander gevalle van 'n reeks (byvoorbeeld of 7,9,7,9 sal gemiddeld tot 8 dan). Olin, jou twee-stadium waterval ook sou 'n verduideliking nodig. Bedoel jy hou twee gemiddelde waardes met die uitslag van die eerste gevoer in die tweede plek in elke iterasie. Wat is die voordeel van hierdie Eksponensiële Bewegende Gemiddeldes vir Onreëlmatige Tyd reeks in tydreeksanalise daar is dikwels 'n behoefte aan gladstryking funksies wat vinnig reageer op veranderinge in die sein. In die tipiese aansoek, kan jy die verwerking van 'n insetsein in real-time, en wil sulke dinge te bereken as die onlangse gemiddelde waarde, of kry 'n oombliklike helling daarvoor. Maar die werklike wêreld seine dikwels lawaaierige. 'N Paar lawaaierige monsters sal die huidige waarde van die sein te maak, of sy helling, wissel. Bewegende gemiddeldes Die eenvoudigste glad funksie is 'n met venster bewegende gemiddelde. Soos monsters kom in wat jy neem 'n gemiddeld van die mees onlangse N waardes. Dit sal glad spykers, maar stel 'n vertraging 8211 of latency. Jou gemiddelde sal altyd vertraag word deur die wydte van jou bewegende gemiddelde. Die voorbeeld hierbo is 'n relatief duur om te bereken. Vir elke monster moet jy Itereer oor die hele omvang van die venster. Maar daar is goedkoper maniere 8211 hou die som van al die monsters in die venster in 'n buffer, en pas die bedrag as nuwe monsters kom in: Nog 'n tipe van bewegende gemiddelde is die 8220weighted beweeg average8221 dat gewigte vir elke posisie in die monster venster. Voordat gemiddeld julle te vermenigvuldig elke monster deur die gewig van die venster posisie. Tegnies Dit word 'n 8220convolution8221. Een tipiese gewig funksie pas 'n klok kurwe om die monster venster. Dit gee 'n sein wat meer gestem om die middelpunt van die venster, en nog 'n bietjie verdraagsaam teenoor lawaaierige monsters. In finansiële ontleding gebruik jy dikwels 'n gewig funksie dat waardes onlangse monsters meer, om 'n bewegende gemiddelde wat nader spore onlangse monsters gee. Ouer monsters word progressief minder gewig. Dit verlaag ietwat die gevolge van latency, terwyl hy nog gee redelike goeie smoothing: Met 'n geweegde gemiddelde, jy altyd moet Itereer oor die hele venster grootte vir elke monster (tensy jy die toegelate gewigte om sekere funksies kan dwing). Die eksponensiële bewegende gemiddelde Nog 'n tipe van die gemiddelde is die eksponensiële bewegende gemiddelde, of EMO. Dit word dikwels gebruik waar latency is van kritieke belang, soos in reële tyd finansiële ontleding. In hierdie gemiddelde, die gewigte te verminder eksponensieel. Elke monster word gewaardeer sommige persent kleiner as die volgende mees onlangse voorbeeld. Met hierdie beperking kan jy die bewegende gemiddelde baie effektief te bereken. Waar Alpha is 'n konstante wat beskryf hoe die venster gewigte te verminder met verloop van tyd. Byvoorbeeld, as elke monster was wat gewig van 80 van die waarde van die vorige voorbeeld, sou jy alfa 0,2 stel. Die kleiner Alpha word hoe langer jou bewegende gemiddelde is. (Bv dit gladder, maar minder reaktief om nuwe monsters). Die gewigte vir 'n EMO met alpha0.20 Soos jy kan sien, want elke nuwe monster wat jy nodig het net om dit gemiddeld met die waarde van die vorige gemiddelde. So berekening is baie baie vinnig. In teorie alle vorige monsters bydra tot die huidige gemiddelde, maar hul bydrae word eksponensieel kleiner met verloop van tyd. Dit is 'n baie kragtige tegniek, en waarskynlik die beste as jy wil 'n bewegende gemiddelde wat vinnig reageer op nuwe monsters, het 'n goeie glad eienskappe en is vinnig om te bereken nie. Die kode is triviale: EMA vir Onreëlmatige Tydreekse die standaard EMO is fyn wanneer die sein gemonster op 'n gereelde tyd intervalle. Maar wat as jou monsters kom op ongereelde tussenposes Stel jou 'n deurlopende sein wat bemonster op ongereelde tussenposes. Dit is die gewone situasie in finansiële ontleding. In teorie is daar 'n kontinue funksie vir die waarde van enige finansiële instrument, maar jy kan net hierdie sein wanneer iemand werklik 'n handelsmerk voer proe. So jou datastroom bestaan ​​uit 'n waarde, plus die tyd wat dit is waargeneem. Een manier om dit te hanteer is om die onreëlmatige sein te omskep in 'n gereelde sein, deur interpol tussen waarnemings, en hermonstering. Maar dit verloor data, en dit weer stel latency. Dit is moontlik om 'n EMO vir 'n onreëlmatige tydreekse direk bereken: In hierdie funksie, slaag jy in die huidige monster van jou sein, en die vorige voorbeeld, en die bedrag van die tyd wat verloop het tussen die twee, en die vorige waarde wat deur hierdie funksie. Resultate So hoe goed werk dit te demonstreer I8217ve gegenereer 'n sinusgolf, dan gemonsterde dit op ongereelde tussenposes, en bekendgestel sowat 20 geraas. Dit is die sein sal lukraak wissel - 20 uit die oorspronklike 8220true8221 sinus sein. Hoe goed die onreëlmatige eksponensiële bewegende gemiddelde herstel die sein Die rooi lyn is die oorspronklike sinusgolf 8211 gemonsterde op ongereelde tussenposes. Die blou lyn is die sein by die geluid bygevoeg. Die blou lyn is die enigste sein die EMO sien. Die groen lyn is die reëlmatige EMO. Jy kan sien dit herstel die sein baie goed. is 'n bietjie lomp, maar wat kan jy verwag van so 'n lawaaierige bron sein Dit verskuif ongeveer 15 tot die reg, omdat die EMO doen stel sommige latency. Die gladder jy dit wil hê, hoe meer latency jy sal sien. Maar uit dit wat jy kan byvoorbeeld bereken 'n oombliklike helling vir 'n rumoerige onreëlmatige sein. Wat kan jy doen met daardie Hmm8230. Hulpbronne: Gemiddeldes / Eenvoudige bewegende gemiddelde Gemiddeldes / Eenvoudige bewegende gemiddelde U word aangemoedig om hierdie taak op te los volgens die taakbeskrywing, die gebruik van enige taal wat jy kan weet. Berekening van die eenvoudige bewegende gemiddelde van 'n reeks van getalle. Skep 'n Stateful funksie / klas / instansie wat 'n tydperk neem en gee 'n roetine dat 'n aantal neem as argument en gee 'n eenvoudige bewegende gemiddelde van sy argumente tot dusver. 'N Eenvoudige bewegende gemiddelde is 'n metode vir die berekening van 'n gemiddelde van 'n stroom van getalle met slegs gemiddeld die afgelope 160 P 160 nommers van die stroom, 160 waar 160 P 160 is bekend as die tydperk. Dit kan toegepas word deur die roeping van 'n parafering roetine met 160 P 160 as sy argument, 160 I (P), 160 wat dan 'n roetine dat wanneer geroep met individuele, opeenvolgende lede van 'n stroom van getalle, bere die gemiddelde van sou terugkeer (up om), die laaste 160 P 160 van hulle, kan noem dit 160 SMA (). Die woord 160 Stateful 160 in die taak beskrywing verwys na die behoefte aan 160 SMA () 160 om sekere inligting tussen oproepe onthou om dit: 160 Die tydperk, 160 P 160 N bestel houer van ten minste die laaste 160 P 160 nommers uit elk van sy individuele oproepe. Stateful 160 beteken ook dat opeenvolgende oproepe na 160 I (), 160 die initializer, 160 moet afsonderlike roetines wat doen 160 nie 160 aandele gered staat sodat hulle kan gebruik word op twee onafhanklike strome van data terugkeer. Pseudo-kode vir die implementering van 160 SMA 160 is: Hierdie weergawe maak gebruik van 'n aanhoudende tou om die mees onlangse p waardes hou. Elke funksie teruggekeer van init-bewegende-gemiddelde het sy toestand in 'n atoom met 'n tou waarde. Dit implementering gebruik 'n omsendbrief lys van die nommers in die venster op te slaan aan die begin van elke iterasie wyser verwys na die lys sel wat hou die waarde net beweeg by die venster uit en vervang moet word met die net toegevoegde waarde. Met behulp van 'n afsluiting wysig Tans hierdie SMA cant nogc wees omdat dit 'n sluiting op die wal ken. Sommige ontsnapping analise kan die hoop toekenning te verwyder. Met behulp van 'n struct wysig Hierdie weergawe vermy die hoop toekenning van die sluiting behoud van die data in die stapel raamwerk van die hooffunksie. Dieselfde uitset: Om te verhoed dat die drywende punt benaderings hou opstapel en groei, kan die kode 'n periodieke som uit te voer op die hele ronde tou skikking. Dit implementering produseer twee (funksie) voorwerpe deel staat. Dit is idiomatiese in E te skei insette van uitset (lees en skryf) eerder as om dit kombineer in een voorwerp. Die struktuur is dieselfde as die implementering van Standard DeviationE. Die onderstaande elikser program genereer 'n anonieme funksie met 'n ingeboude tydperk p, wat gebruik word as die tydperk van die eenvoudige bewegende gemiddelde. Die aanloop funksie lees numeriese insette en gee dit aan die nuutgeskepte anonieme funksie, en dan inspekteer die resultaat te STDOUT. Die uitset word hieronder getoon, met die gemiddelde, gevolg deur die gegroepeer insette, wat die basis vorm van elke bewegende gemiddelde. Erlang het sluitings, maar onveranderlike veranderlikes. 'N Oplossing is dan om prosesse en 'n eenvoudige boodskap verby gebaseer API te gebruik. Matrix tale roetines om die sweef avarages vir 'n gegewe volgorde van items bereken. Dit is minder doeltreffend te loop as in die volgende opdragte. Voortdurend gevra vir 'n inset ek. wat by die einde van 'n lys T1. T1 kan gevind word deur te druk 2ND / 1, en gemiddelde kan gevind word in Lys / OPS druk op die program te beëindig. Funksie wat 'n lys met die gemiddeld data van die verskaf argument program wat 'n eenvoudige waarde terug by elke aanroeping terug: lys is die lys word gemiddeld: p is die tydperk: 5 opbrengste die gemiddeld lys: Voorbeeld 2: Die gebruik van die program movinav2 (i , 5) - Inisialiseer bewegende gemiddelde berekening, en definieer tydperk van 5 movinav2 (3, x): x - nuwe data in die lys (waarde 3), en gevolg sal word gestoor op veranderlike x, en vertoon movinav2 (4 x) : x - nuwe data (waarde 4), en die nuwe gevolg sal gestoor word op veranderlike x, en vertoon (43) / 2. Beskrywing van die funksie movinavg: veranderlike r - is die gevolg (die gemiddeld lys) wat veranderlike sal teruggestuur word ek - is die indeks veranderlike, en dit dui op die einde van die sub-lys die lys word gemiddeld. veranderlike Z - 'n helper veranderlike Die funksie gebruik veranderlike i om vas te stel watter waardes van die lys sal in die volgende gemiddelde berekening in ag geneem word. By elke iterasie, veranderlike i dui op die laaste waarde in die lys wat gebruik sal word in die gemiddelde berekening. So ons moet net om uit te vind wat die eerste waarde in die lys sal wees. Gewoonlik goed moet p elemente oorweeg, sodat die eerste element sal die een geïndekseer deur (i-P1) te wees. Maar op die eerste iterasies wat berekening gewoonlik negatief sal wees, sodat die volgende vergelyking negatiewe indekse sal vermy: Max (i-p1,1) of, reël die vergelyking, Max (i-p, 0) 1. of, die reël van die vergelyking, (i - (Max (IP, 0) 1) 1), en dan - maar die aantal elemente op die eerste iterasies sal ook kleiner wees, sal die korrekte waarde (begin indeks 1 einde indeks) wees , (i-Max (IP, 0)). Veranderlike Z hou die algemene waarde (maksimum (IP), 0) sodat die beginindex sal wees (Z1) en die numberofelements sal wees (iz) die middel (lys, Z1, iz) sal die lys van waarde wat sal gemiddeld som terugkeer ( .) sal hulle som som (.) / (iz) ri sal hulle gemiddeld en stoor die resultaat in die toepaslike plek in die lys gevolg behulp van 'n sluiting en die skep van 'n funksie


No comments:

Post a Comment